1

Define your parameter based on data sensitivity.

2

Build Job File

Build your job as yaml file containing the parameters in your target programming language.

Minimal job example:

files:
- filename1.mp3
- filename2.wav
model:
- mini

Parameters

files
list
required

List of local input audio file name(s).

Example:

files:
- filename1.mp3
- filename2.wav
model
string
default:"mini"

Model tier to use for phi reduction. Pass advanced if you want to use advanced reasoning via our private-LLM. Available model’s: advanced, mini.

Example:

model:
- mini

Example:

model:
- advanced
task
string
default:"protect"

Task to apply to attached files. Available task’s: protect, transcribe.

Example:

task:
- transcribe
agents
list
default:"health-generic"

Agents with specififc domain dependency and purpose. Example:

model:
- advanced
agents:
- hipaa
language
string
default:"en"

Set the target language for transcription. Example:

language:
- en

Submit your Job using Voice Habor’s SDK

Speech to text is by default applied for the task protect. To have the transcription without any reduction use transcribe as task.

BASE_URL = "https://voiceharbor.ai"
usage_token = "USAGE_TOKEN"
# Create a new job on the server via the class method.
job_id = VoiceHarborClient.create_job(BASE_URL, usage_token)

client = VoiceHarborClient(
    base_url=BASE_URL,
    job_id=job_id,
    token=usage_token,
    inputs_dir="./inputs/tests"
)

# Submit input files and the job file. 
job_params = {"files": [], "model":"mini"}  
job_params = client.submit_files(job_params)
job_file = client.submit_job(job_params)
logger.info(f"Job file created: {job_file}")

Get Started with SDK

Start coding today using Python and integrate the Voice Harbor API into your workflows.